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Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility
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We study the critical properties of the Lipkin-Meshkov-Glick model in terms of the fidelity susceptibility. By
using the Holstein-Primakoff transformation, we obtain explicitly the critical exponent of the fidelity suscep-
tibility around the second-order quantum phase transition point. Our results provide a rare analytic case for the
fidelity susceptibility in describing the universality class in quantum critical behavior. The different critical
exponents in two phases are nontrivial results, indicating that the fidelity susceptibility is not always extensive.

DOI: 10.1103/PhysRevE.78.032103

The Lipkin-Meshkov-Glick (LMG) model [1] was intro-
duced in nuclear physics. It describes a cluster of mutually
interacting spins in a transverse magnetic field. In condensed
matter physics, this model is associated with a system of
infinite coordination number. In earlier time, scaling behav-
iors of critical observables have been studied by mean-field
analysis [2], while recently the finite-size scaling of this
model was studied by the 1/N expansion in the Holstein-
Primakoff single boson representation [3] and by the con-
tinuous unitary transformations (CUT) [4—6]. Meanwhile, a
rich structure of four different regions is revealed in the pa-
rameter space through a careful scrutiny on the spectrum [7].
Besides, the quantum criticality has been investigated by
studying its entanglement properties [8—12]. Both the first-
and second-order quantum phase transitions (QPTs) [13]
have been revealed, in the antiferromagnetic and the ferro-
magnetic cases, respectively [8,9].

Regarding the QPT itself, the ground state of a system
would undergo a significant structural change at a certain
critical point. This primary observation suggests a new de-
scription of QPTs in terms of fidelity [14-26], a concept
introduced in quantum information theory [12]. Mathemati-
cally it is the overlap between two ground states in which
their driving parameters deviated by a small amount. How-
ever, the fidelity depends computationally on an arbitrarily
small yet finite change of the driving parameter. For this,
Zanardi et al. introduced the Riemannian metric tensor [18],
while You et al. suggested the fidelity susceptibility [19],
both focus on the leading term of the fidelity, in order to
explain singularities in QPTs. In addition, scaling analysis of
these quantities has been informative: it helps understanding
their divergence and the criticality of the system [21], and it
also reveals the intrinsic relation between the critical expo-
nent of some physical quantities and that of the fidelity sus-
ceptibility [22].

In this paper, we explicitly compute the ground-state fi-
delity susceptibility and its critical exponent of the LMG
model. Numerical analysis is also performed to check with
our analytic calculations. We show that the 1/N expansion in
the Holstein-Primakoff transformation is sufficient to deter-
mine the critical exponent of the fidelity susceptibility yr. In
addition, we revealed two distinct critical exponents in two
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phases which is not a general feature of the fidelity suscep-
tibility. Therefore our findings not only suggest another route
to understanding the quantum criticality of the LMG model,
but also show that the fidelity susceptibility is not always
extensive in the critical phenomena of a quantum many-body
system.

The Hamiltonian of the LMG model reads

H=—15VZ (07 + yo,00) ~h 2 o (1)

i<j i

=— (MN)(1 + 9)(S* - 57 = N/2)
—2hS, - (M2N)(1 - 9)(S2 + 52), (2)

where o,(k=x,y,7) are the Pauli matrices, S,==;0’/2, and
§.=S,*iS,. The prefactor 1/N is necessary to ensure finite
energy per spin in the thermodynamic limit. It is understood
that the total spin and the parity P=II;0”. are the conserved
quantities, i.e., [H,S*]=[H,P]=0. In addition, in the isotro-
pic case y=1, one has [H ,SZ]=O and simultaneous eigen-
states can be found. In the main context, the following pa-
rameter space is considered: N\=1, y| <1, h=0. We take h
=() as the spectrum invariant under the transformation /<«
—h. As a common practice we only consider the maximum
spin sector S=N/2 which contains the lowest energy state.

We now briefly review of the concept of the fidelity sus-
ceptibility here. Suppose there is a Hamiltonian of a general
form as

H=Hy(y) +f(hH,, 3)

for H; is defined as the driving term of the system, which
simply does not commute with H, The function f(h)
coupled to H; is often considered as the linear external field
f(h)=h. Then the fidelity susceptibility is defined as [18,19]

| dfh) P KnlH|0)*
F‘[ dh },%[EH—EOP’

where E, and |n) stand for the nth eigenenergies and eigen-
states of the (whole) Hamiltonian, respectively.

The fidelity susceptibility is well defined for a nondegen-
erate ground state and non-eigen-driving Hamiltonians Hj.
However, the LMG model undergoes ground state level
crossing when y=1, and H;=-2S, commutes with the whole
Hamiltonian. So we put our focus on calculating the fidelity

(4)
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susceptibility for an arbitrary isotropy |y| < 1. One resolution
is to use the Bethe-ansatz solution [27,28], which is rather
complicated. So we adopt the 1/N expansion method which
was used extensively by Dusuel and Vidal [4,5], that corre-
sponds to the large N limit.

The 1/N expansion method is done under the Holstein-
Primakoff single boson representation [3] framework. In the
low energy spectrum the spin operators in the S=N/2 sub-
space are mapped into bosonic operators:

SZ=S—a%a,

S, =28 -d'a)"?a=N"*(1 - a'a/N)?a=S", (5)

where a (a) is the standard bosonic annihilation (creation)
operator satisfying [a,a"]=1. The above transformation is
direct and valid when 2=1; when 0<h<1 it can also be
used through semiclassical treatment [4,5]. This representa-
tion is also known as the spin-wave theory. It is well adapted
to the computation of the low-energy physics when
(a'a)/N<1. After inserting these expressions of the spin op-
erators in Eq. (2), one can approximate the square roots as
one and express the result in normal ordered form with re-
spect to the boson vacuum state. Keeping terms of order
(1/N)7", (1/N)7"2, and (1/N)® for h=1 (in which the ap-
proximation is justified), the Hamiltonian becomes

H=—hN+Qh—-1+yda‘a-[(1-y2](a™+a*. (6)

The above Hamiltonian can be diagonalized by a standard
Bogoliubov transformation a=sinh(®/2)b+cosh(0/2)b,
where b(b") is the quasibosonic annihilation (creation) op-
erator. Taking tanh[®(h=1)]=(1-v)/(2h—1+7y), the
Hamiltonian becomes

H==h(N+1)+2\(h=1)(h=y(b'b+3). (7

Thus the low-energy spectrum of the model is mapped to the
spectrum of a simple harmonic oscillator. The eigenstates are
just {|n)}, where b'b|n)y=n|n). We consider the driving
Hamiltonian H; responsible for the QPT,

Hy=-2 o.=-25.. (8)

By transforming it into combinations of » and b' operators,
the fidelity susceptibility is calculated as

xr=(1=9)%[32(h = 1)*(h = 1. )

The derivation above is only valid for =1, for 0<h
<1 the calculation is actually similar to the above case of
h=1, provided that one first rotates the z axis to bring it
along the classical spin direction. We do not show it explic-
itly here, but interested readers are recommended to refer to
Refs. [4,5]. We simply quote the main result; after all the
procedures the Hamiltonian becomes

(1+h%)  1-9y 2é( 1)
————N-—"+2y(1 =D -y | bTb+=].
5 5t V( )1 =) +3

(10)

The driving Hamiltonian also takes a different form:
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FIG. 1. (Color online) Fidelity susceptibility as a function of A
at y=0.5. The inset denotes the difference between the fidelity sus-
ceptibility and the extensive term in Eq. (12).

> oi=—2s, =2 \N1-KES +hS), (1)

for the Holstein-Primakoff (HP) transformation is done on

the § operators. The fidelity susceptibility is then obtained
accordingly:

~ N L =y
a1 -m)(1-y)  3200-9 A=k

Thus we obtained y, of the anisotropic LMG model in
large N limit. We first see the effect of isotropy to the fidelity
susceptibility. It dominates when h<1, but fades out for
large h. Especially in the isotropic limit, when y—1, xr
diverges when h<<1, but tends to zero when 42> 1. This is
the effect of the level-crossing points in the thermodynamic
limit. They together form a region of criticality, and the sys-
tem undergoes continuous level crossing. The fidelity sus-
ceptibility responds drastically while moving along /4. But
when A > 1, there are no further critical points, yy naturally
measures zero when moving along h because we have
[Ho,H,]=0.

An interesting observation is that yy behaves extensively
when 7 <1 even in the large N limit. When discarding the
extensive part of Eq. (12), we arrive a zero point at 1=y,
which does not fit with numerical analysis (Fig. 1). This
discrepancy may be eliminated by adopting other transfor-
mations of the driving Hamiltonian. Particularly, the flow of
operators in the LMG model has been studied by the con-
tinuous unitary transformation (CUT) method [4,5]. How-
ever, such a discrepancy would not hinder us from getting
the correct critical exponent of the fidelity susceptibility.

Let us emphasize the intensive property of the fidelity
susceptibility, which measures the average response to some
driving Hamiltonians. Its divergence should correspond to a
critical point of a second-order QPT rather than to the in-
creasing system size. In order to predict the critical exponent
correctly, we should average the fidelity susceptibility when-
ever necessary. To the leading order, Eq. (12) becomes

xe/N= 1[4 =n)(1-y)]. (13)

XF (12)
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Then it comes to a key result of our paper: yy bears different
critical exponents across the critical point. It diverges as (1
—h)"? when h<1, and the critical exponent is 1/2; (h—1)?
when /> 1, so that the critical exponent is 2. It is unlike the
Ising model in a transverse field [15] and the one-
dimensional asymmetric Hubbard model [22], where the
critical exponent is a single number over the phases.

To illustrate the scaling behavior of the fidelity suscepti-
bility, we perform the exact diagonalization (ED) to solve the
spectrum of H and then calculate the corresponding fidelity
susceptibility numerically. Let us recall the fidelity suscepti-
bility scaling analysis performed in the asymmetric Hubbard
model [22]. According to the scaling ansatz [29] and the
obvious power-law divergence observed in Fig. 1, the res-
caled fidelity susceptibility around its maximum point at A,
is a simple function of a scaling variable, i.e.,

(XF max_XF)/Xsz[NV(h_hmax)]’ (14)

where f(x) is the scaling function and v is the correlation
length critical exponent. This function is universal and does
not depend on the system size, as shown in Fig. 2 for cases
of y=0.5, 0, and —0.5. Remarkably, the critical exponent v
for the three cases are very close. This observation strongly
implies that v is a universal constant and does not depend on
the parameters y and h.

In recent studies of the fidelity susceptibility in critical
phenomena, it was pointed out that the intensive fidelity sus-
ceptibility scales generally like [21,22]

Xp = U|h—h] (15)

around the critical point. In the last section, we have already
obtained

2, h>1

16
L 0=h<l1, (16)

o=

which is also a universal constant. Then if the maximum
point of the intensive fidelity susceptibility scales like

XFmaxocN#’ (]7)

the scaling ansatz also implies another important relation,
ie.,
a=ulv. (18)

We try to confirm this equality numerically. In Fig. 2, Eq.
(14) is best fitted with »=0.665. The case to determine u is
more subtle. It is because Eq. (14) remains the same form
even for averaged xp, but the maximum of x does not. To
resolve this problem, we first determine w from the “bare”
Xxr- By using the least square fit method, we evaluated bare
for different 7. The numerical details are shown in Table I.
However, the exponent w does not converge perfectly. We
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FIG. 2. (Color online) The finite-size scaling analysis is per-
formed for the case of power-law divergence at y=0.5 (a), y=0
(b), and y=-0.5 (c) for system sizes N=2" (n=12,13,14,15,16).
The fidelity susceptibility is considered as a function of the scaling
variable N”(h—h,,,,), with the correlation length critical exponent
v=0.665.

TABLE 1. Scaling exponent u at various 7, obtained by sampling system size in different range.

y 0.8 0.5

0 -0.2 -0.5

1.3221 +0.0006
1.3250+0.0003

1.3264 = 0.0004
1.3285 = 0.0004

m(N e[28,2°])
m(N e[2'2,219])

1.3267 = 0.0004
1.3295 +0.0002

1.3283 +0.0003
1.3302+0.0001

1.3285 %=0.0003
1.3304 = 0.0001

1.3280 % 0.0004
1.3299 +0.0002
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FIG. 3. (Color online) The finite-size scaling is performed for
the maximum of the fidelity susceptibility.

compare the w obtained in a range of [2'2,2'°], and those
from the range [2%,2'¢]. The results converge better for
larger scaling regions. According to the trend of w in larger
system sizes, we roughly estimate u=1.33 with three effec-
tive digits (Fig. 3).

When h> 1, xp is observed to be intensive (Fig. 1). With
the estimated w and v, the equality (18) is satisfied with «
=2. On the other hand, when h<<1, yy/N is the intensive
quantity. For ypo N¥,

XN o« N#=1 (19)
Thus w==0.33, this will give the relation @=1/2. These two

values of a are consistent with our analytic calculation in the
last section.
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The exponent u, v can also be discussed from the scaling
ansatz at the critical point rather than the maximum point of
a finite system, as shown by Vidal, Dusuel, and Barthel [5,6].
Based on their approach, the critical exponent v takes the
value of 2/3, and is independent of the magnitude of . Our
results on the maximum study simply agree with this value
and can be generalized to other models where the precise
critical point is not known.

Another scaling analysis is to examine how h,,, tends to
the critical point i.=1. It should scale like /.~ /1, %N~ in
the large N limit. We find 6=0.66 with two effective digits
for various v.

In short, we can confirm that the exponents u, v, and 6 of
the fidelity susceptibility do not depend on the value of y and
h. They are universal constants for the LMG model and are
related to the critical exponent of the fidelity susceptibility .

In summary, we computed explicitly the fidelity suscepti-
bility and its critical exponent of the LMG model at different
isotropy. We found that the fidelity susceptibility is not al-
ways an extensive quantity, indicated by the different critical
exponents of the fidelity susceptibility in two phases. Such a
rather nontrivial result is further confirmed by ED and the
related numerical analysis. Since the fidelity susceptibility is
believed to be able to characterize the universality class of
quantum phenomena, our results therefore provide a rare ex-
plicit case for the study of fidelity susceptibility.
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